Solving Multiclass Learning Problems via Error-Correcting Output Codes
نویسندگان
چکیده
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hxi; f(xi)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which error-correcting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of over tting avoidance techniques such as decision-tree pruning. Finally, we show that|like the other methods|the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass problems.
منابع مشابه
Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems
Classification (machine learning): How does one algorithmically classify the though a more effective approach could be using error correcting codes: @(cs/9501101) Solving Multiclass Learning Problems via Error-Correcting Output Codes. to solving machine learning problems can be broadly useful.
متن کاملSolving Multiclass Learning Problems viaError - Correcting Output
Multiclass learning problems involve nding a deenition for an unknown function f (x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The deenition is acquired by studying collections of training examples of the form hx i ; f (x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorit...
متن کاملError-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs
Multiclass learning problems involve nding a deeni-tion for an unknown function f (x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The deenition is acquired by studying large collections of training examples of the form hx i ; f (x i)i. Existing approaches to this problem include (a) direct application of multiclass algorithms such as the decision-tree algorithms I...
متن کاملUsing output codes to boost multiclass learning problems
This paper describes a new technique for solving multiclass learning problems by combining Freund and Schapire’s boosting algorithm with the main ideas of Dietterich and Bakiri’s method of error-correcting output codes (ECOC). Boosting is a general method of improving the accuracy of a given base or “weak” learning algorithm. ECOC is a robust method of solving multiclass learning problems by re...
متن کاملMulticlass Learning by Probabilistic Embeddings
We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 2 شماره
صفحات -
تاریخ انتشار 1995